IBM AI and Cloud Technology Helps Agriculture Industry Improve Food and Crop Supply

IBM (NYSE: IBM) has announced the global expansion of Watson Decision Platform for Agriculture, with AI technology tailored for new crops and specific regions to help feed a growing population.
For the first time, IBM is providing a global agriculture solution that combines predictive technology with data from The Weather Company, an IBM Business, and IoT data to help give farmers around the world greater insights about planning, plowing, planting, spraying and harvesting.
By 2050, the world will need to feed two billion more people without an increase in arable land[1]. IBM is combining power weather data – including historical, current and forecast data and weather prediction models from The Weather Company – with crop models to help improve yield forecast accuracy, generate value, and increase both farm production and profitability.
“As a farmer, the wild card is always the weather. IBM overlays weather details with my own data and historical information to help me apply, verify, and make decisions,” said Roric Paulman, owner/operator of Paulman Farms in Southwest Nebraska.
“For example, our farm is in a highly restricted water basin, so the ability to better anticipate rain not only saves me money but also helps me save precious natural resources.”
New crop models include corn, wheat, soy, cotton, sorghum, barley, sugar cane, and potato, with more coming soon. These models will now be available in the U.S., Canada, Mexico, and Brazil, as well as new markets across Europe, Africa, and Australia.
“These days farmers don’t just farm food, they also cultivate data – from drones flying over fields to smart irrigation systems, and IoT sensors affixed to combines, seeders, sprayers, and other equipment,” said Kristen Lauria, general manager of Watson Media and Weather Solutions, IBM. “Most of the time, this data is left on the vine — never analyzed or used to derive insights. Watson Decision Platform for Agriculture aims to change that by offering tools and solutions to help growers make more informed decisions about their crops.”
The average farm generates an estimated 500,000 data points per day, which will grow to 4 million data points by 2036[2]. Applying AI and analysis to the aggregated field, machine, and environmental data can help improve shared insights between growers and enterprises across the agriculture ecosystem. With a better view of the fields, growers can see what’s working on certain farms and share best practices with other farmers.
The platform assesses data in an electronic field record to identify and communicate crop management patterns and insights. Enterprise businesses such as food companies, grain processors, or product distributors can then work with farmers to leverage those insights.
It helps track crop yield as well as the environmental, weather and plant biologic conditions that go into a good or bad yield, such as irrigation management, pest and disease risk analysis and cohort analysis for comparing similar subsets of fields.
The result isn’t just more productive farmers. Watson Decision Platform for Agriculture could help a livestock company eliminate a certain mold or fungus from feed supply grains or help identify the best crop irrigation practices for farmers to use in drought-stricken areas like California.
It could help deliver the perfect French fry for a fast food chain that needs longer – not fatter – potatoes from its network of growers. Or it could help a beer distributor produce a more affordable premium beer by growing higher quality barley that meets the standard required to become malting barley.
Watson Decision Platform for Agriculture is built on IBM PAIRS Geoscope from IBM Research, which quickly processes massive, complex geospatial and time-based datasets collected by satellites, drones, aerial flights, millions of IoT sensors and weather models. It crunches large, complex data and creates insights quickly and easily so farmers and food companies can focus on growing crops for global communities.
IBM and The Weather Company help the agriculture industry find value in weather insights. IBM Research collaborates with startup Hello Tractor to integrate The Weather Company data, remote sensing data (e.g., satellite), and IoT data from tractors. IBM also works with crop nutrition leader Yara to include hyperlocal weather forecasts in its digital platform for real-time recommendations, tailored to specific fields or crops.
IBM acquired The Weather Company in 2016 and has since been helping clients better understand and mitigate the cost of weather on their businesses. The global expansion of Watson Decision Platform for Agriculture is the latest innovation in IBM’s efforts to make the weather a more predictable business consideration. Also just announced, Weather Signals is a new AI-based tool that merges The Weather Company data with a company’s own operations data to reveal how minor fluctuations in weather affects business.
The combination of rich weather forecast data from The Weather Company and IBM’s AI and Cloud technologies is designed to provide a unique capability, which is being leveraged by agriculture, energy and utility companies, airlines, retailers and many others to make informed business decisions.
About Soko Directory Team
Soko Directory is a Financial and Markets digital portal that tracks brands, listed firms on the NSE, SMEs and trend setters in the markets eco-system.Find us on Facebook: facebook.com/SokoDirectory and on Twitter: twitter.com/SokoDirectory
- January 2025 (119)
- February 2025 (191)
- March 2025 (212)
- April 2025 (193)
- May 2025 (161)
- June 2025 (157)
- July 2025 (226)
- August 2025 (211)
- September 2025 (270)
- October 2025 (297)
- November 2025 (38)
- January 2024 (238)
- February 2024 (227)
- March 2024 (190)
- April 2024 (133)
- May 2024 (157)
- June 2024 (145)
- July 2024 (136)
- August 2024 (154)
- September 2024 (212)
- October 2024 (255)
- November 2024 (196)
- December 2024 (143)
- January 2023 (182)
- February 2023 (203)
- March 2023 (322)
- April 2023 (297)
- May 2023 (267)
- June 2023 (214)
- July 2023 (212)
- August 2023 (257)
- September 2023 (237)
- October 2023 (264)
- November 2023 (286)
- December 2023 (177)
- January 2022 (293)
- February 2022 (329)
- March 2022 (358)
- April 2022 (292)
- May 2022 (271)
- June 2022 (232)
- July 2022 (278)
- August 2022 (253)
- September 2022 (246)
- October 2022 (196)
- November 2022 (232)
- December 2022 (167)
- January 2021 (182)
- February 2021 (227)
- March 2021 (325)
- April 2021 (259)
- May 2021 (285)
- June 2021 (272)
- July 2021 (277)
- August 2021 (232)
- September 2021 (271)
- October 2021 (304)
- November 2021 (364)
- December 2021 (249)
- January 2020 (272)
- February 2020 (310)
- March 2020 (390)
- April 2020 (321)
- May 2020 (335)
- June 2020 (327)
- July 2020 (333)
- August 2020 (276)
- September 2020 (214)
- October 2020 (233)
- November 2020 (242)
- December 2020 (187)
- January 2019 (251)
- February 2019 (215)
- March 2019 (283)
- April 2019 (254)
- May 2019 (269)
- June 2019 (249)
- July 2019 (335)
- August 2019 (293)
- September 2019 (306)
- October 2019 (313)
- November 2019 (362)
- December 2019 (318)
- January 2018 (291)
- February 2018 (213)
- March 2018 (275)
- April 2018 (223)
- May 2018 (235)
- June 2018 (176)
- July 2018 (256)
- August 2018 (247)
- September 2018 (255)
- October 2018 (282)
- November 2018 (282)
- December 2018 (184)
- January 2017 (183)
- February 2017 (194)
- March 2017 (207)
- April 2017 (104)
- May 2017 (169)
- June 2017 (205)
- July 2017 (189)
- August 2017 (195)
- September 2017 (186)
- October 2017 (235)
- November 2017 (253)
- December 2017 (266)
- January 2016 (164)
- February 2016 (165)
- March 2016 (189)
- April 2016 (143)
- May 2016 (245)
- June 2016 (182)
- July 2016 (271)
- August 2016 (247)
- September 2016 (233)
- October 2016 (191)
- November 2016 (243)
- December 2016 (153)
- January 2015 (1)
- February 2015 (4)
- March 2015 (164)
- April 2015 (107)
- May 2015 (116)
- June 2015 (119)
- July 2015 (145)
- August 2015 (157)
- September 2015 (186)
- October 2015 (169)
- November 2015 (173)
- December 2015 (205)
- March 2014 (2)
- March 2013 (10)
- June 2013 (1)
- March 2012 (7)
- April 2012 (15)
- May 2012 (1)
- July 2012 (1)
- August 2012 (4)
- October 2012 (2)
- November 2012 (2)
- December 2012 (1)
